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Abstract. Using a non-linear version of electrodynamics coupled to the teleparallel equivalent of general rel-
ativity (TEGR), we obtain new regular exact solutions. The non-linear theory reduces to the Maxwell one
in the weak limit with the tetrad fields corresponding to a charged space-time. We then apply the energy-
momentum tensor of the gravitational field, established in the Hamiltonian structure of the TEGR, to the
solutions obtained.

1 Introduction

It is usually asserted in the literature that the principle
of equivalence prevents the gravitational energy from be-
ing localizable. However, an expression for the gravita-
tional field energy has been pursued since the early days
of general relativity (GR). A considerable amount of ef-
forts have been devoted to finding a viable expression other
than the pseudotensor one (an expression for the quasi-
local energy, i.e., the energy associated to a closed spacelike
two-surface, in the context of the Hilbert–Einstein action
integral, has emerged as a tentative description of the grav-
itational energy [1–5]). The search for a consistent expres-
sion for the gravitational energy is undoubtedly a long-
standing problem in GR. The argument based on the
principle of equivalence regarding the non-localizability
of the gravitational energy is controversial and has not
generally been accepted [6, 7]. The principle of equiva-
lence does not preclude the existence of scalar densities on
the space-time manifold, constructed out of tetrad fields,
that may eventually yield the correct description of the
energy properties of the gravitational field. Such densi-
ties may be given in terms of the torsion tensor, which
cannot be made to vanish at a point by a coordinate
transformation. Møller was the first one to notice that
the tetrad field description of the gravitational field al-
lows for a more satisfactory treatment of the gravitational
energy-momentum [8–10].
For a satisfactory description of the total energy of an

isolated system it is necessary that the energy density of
the gravitational field is given in terms of first- and/or
second-order derivatives of the gravitational field variables.
It is well known that there exists no covariant, non-trivial
expression constructed out of the metric tensor. However,
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covariant expressions that contain a quadratic form of first-
order derivatives of the tetrad field are feasible. Thus, it is
legitimate to conjecture that the difficulties regarding the
problem of defining the gravitational energy-momentum
are related to the geometrical description of the gravita-
tional field rather than that they are an intrinsic draw-
back of the theory [6, 11]. Møller has shown that the prob-
lem of the energy-momentum complex has no solution in
the framework of gravitational field theories based on Rie-
mannian space-time [12]. In a series of papers, [12–15] he
was able to obtain a general expression for a satisfactory
energy-momentum complex in teleparallel space-time.
At present, teleparallel theory seems to be popular

again, and there is a trend of analyzing the basic solu-
tions of general relativity with teleparallel theory and com-
paring the results. The teleparallel equivalent of general
relativity (TEGR) is a viable alternative geometrical de-
scription of Einstein’s general relativity written in terms of
the tetrad field [16]. It continues to be the object of thor-
ough investigations [6–37]. In the framework of the TEGR
it has been possible to address the long-standing problem
of defining the energy, momentum and angular momentum
of the gravitational field [38, 39]. The tetrad field seems to
be a suitable field quantity to address this problem, be-
cause it yields the gravitational field and at the same time
establishes a class of reference frames in space-time [40].
Moreover, there are simple and clear indications that the
gravitational energy-momentum defined in the context of
the TEGR provides a unified picture of the concept of
mass-energy in special and general relativity.
Teleparallel theories of gravity are considered as an es-

sential part of generalized non-Riemannian theories such
as the Poincaré gauge theory [29, 42–49] or metric affine
gravity [49]. Physics relevant to geometry may be re-
lated to the teleparallel description of gravity [50, 51]. The
teleparallel approach is used for the proof that the gravi-
tational energy is positive [52]. The relation between the
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spinor Lagrangian and teleparallel theory is established
in [53]. It has been shown that the TEGR is not consistent
in the presence of minimally coupled spinning matter [54].
The consistence of the coupling of the Dirac fields to the
TEGR is also treated in [55]. However, it has been shown
that this demonstration is not correct [56]. Also the general
teleparallel gravity model within the framework of metric
affine gravity theory has been studied in [57].
In fact, the first attempt to construct a theory of the

gravitational field in terms of a set of four linearly indepen-
dent vector fields in the Weitzenböck geometry is due to
Einstein [58–60]. The general form of the tetrad field, ea

µ,
having spherical symmetry was given by Robertson [61]. In
Cartesian form it can be written as1

e(0)
0 =A , e(a)

0 = Cxa ,

e(0)
α =Dxα ea

α = δαaB+Fx
axα+ εaαβSx

β , (1)

where A, C, D, B, F , and S are functions of t and r =
(xαxα)1/2. We consider an asymptotically flat space-time
in this paper, and we impose the boundary condition that
for r→∞ the tetrad field of (1) approaches the tetrad of
Minkowski space-time, (ea

µ) = diag(1, δa
α).

It is the aim of the present paper to find asymptoti-
cally flat solutions with spherical symmetry, which is differ-
ent from the Schwarzschild and Reissner–Nordström solu-
tions in the TEGR. This can be achieved by inducing the
TEGR geometry in non-linear electrodynamics. Applying
this philosophy, we obtain two exact solutions. One of these
contains an arbitrary function Ψ(R, t), while the other one
contains an arbitrary parameter η.
In Sect. 2, we briefly review the TEGR theory of grav-

itation. We study the general solution without the S-
term (see (1)), where the remaining unknown functions
are allowed to depend on R and t, and a solution with
an arbitrary function Ψ(R, t) is obtained. We compare
this solution with that obtained before in [62]. Also
in Sect. 2, we study the tetrad field with a non-vanishing
S-term (see (1)) from which a solution with one param-
eter η is obtained. Both solutions give the same met-
ric, which is a regular charged static spherically sym-
metric black hole. Calculations of the energy content of
a sphere of radius R using the regularized expression of
the gravitational energy-momentum are given in Sect. 3.
The final section is devoted to a discussion and our
conclusions.

2 The TEGR theory and regular solutions

In a space-time with absolute parallelism the parallel vec-
tor fields ea

µ define the non-symmetric affine connection

Γλµν
def.
= ea

λeaµ,ν , (2)

1 Space-time indices µ, ν, · · · and SO(3,1) indices a, b, · · · run
from 0 to 3. Time and space indices are assigned to µ= 0, i, and
a= (0), (i).

where eaµ,ν = ∂νeaµ. The curvature tensor defined by
Γλµν , given in (1), is identically vanishing, however. The
metric tensor gµν is given by

2

gµν = ηabe
a
µe
b
ν , (3)

with the Minkowski metric ηa b = diag(−1,+1,+1,+1).
The Lagrangian density for the gravitational field in the

TEGR, in the presence of matter fields, is given by3 [6, 40]

LG = eLG =−
e

16π

(
T abcTabc

4
+
T abcTbzc

2
−T aTa

)
−Lm

=−
e

16π
ΣabcTabc−Lm , (4)

where e= det(eaµ). The tensorΣ
abc is defined by

Σabc
def.
=
1

4

(
T abc+T bac−T cab

)
+
1

2

(
ηacT b−ηabT c

)
.

(5)

T abc and T a are the torsion tensor, and the basic vector
field is defined by

T aµν
def.
= eaλT

λ
µν = ∂µe

a
ν −∂νe

a
µ , T

a def.= T bb
a
.
(6)

It can be shown that the quadratic combination ΣabcT abc

is proportional to the scalar curvature R(e), except for
a total divergence term [11]. Lm represents the Lagrangian
density for the matter fields.
The non-linear electrodynamics Lagrangian has the

form [70]

Hn.e.m.
def.
= −

1

4
PµνP

µρ , (7)

with Pµν = L(F)FFµν , L(F)F =
∂L(F)
∂F , L(F) =

1
4FµνF

µν

and Fµν being the antisymmetric tensor given by
4 Fµν =

∂µAν −∂νAµ, where Aµ is the vector potential.
The gravitational and non-linear electromagnetic field

equations for the system described by LG +Hn.e.m. have
the following form [6, 40, 70]:

eaλebµ∂ν
(
eΣbλν

)
− e

(
ΣbνaTbνµ−

1

4
eaµTbcdΣ

bcd

)

=
1

2
κeTaµ ,

∂ν
(√
−gPµν

)
= 0 , (8)

where δLm
δeaµ

≡ eTaµ. It is possible to prove by explicit cal-
culations that the left hand side of the first equation of (8)
is exactly given by e2

{
Raµ(e)−

1
2eaµR(e)

}
[6]. The energy-

momentum tensor T µν is defined by

T µν
def.
= 2
(
HPP

µ
λP
νλ− δµν {2PHP −H}

)
, (9)

2 Latin indices are raised and lowered with ηab and η
ab.

3 Throughout this paper we use the relativistic units c=G=
1 and κ= 8π.
4 Heaviside–Lorentz rationalized units will be used.
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where P = (1/4)(PµνP
µν) andHP =

∂H(P)
∂P
.

Now we are going to find regular solutions in the TEGR
theory.We will discuss two cases separately: one with S = 0
and the other with S �= 0; see (1).

2.1 The case without the S-term

In this case the solution of the field (8) is the regular
charged black hole [62]. Therefore, the solution of (1) with
S = 0 can be obtained from the diagonal tetrad of the regu-
lar charged black hole metric by a local Lorentz transform-
ation that keeps spherical symmetry. Namely, we see that

ea
µ = Λa

lel
(0)µ (10)

is the most general, regular charged black hole solution
without the S-term. Here el

(0)µ is the diagonal tetrad [62]
and Λa

l is the local Lorentz transformation given in [63].
The explicit form of the tetrad field, ea

µ, is then given
by

(eµa) =

⎛
⎜⎜⎜⎝

L
X

ΨX 0 0
Ψ sin θ cosφ

X
LX sin θ cosφ cos θ cosφ

R
− sin φ
R sin θ

Ψ sin θ sinφ
X LX sin θ sinφ cos θ sinφ

R
cosφ
R sin θ

Ψ cos θ
X LX cos θ − sin θR 0

⎞
⎟⎟⎟⎠ ,

(11)

where Ψ is an arbitrary function of t and R;

L=
√
Ψ2+1 , X =

{
1−
2m

R

[
1− tanh

(
q2

2mR

)]}1/2
,

(12)

and R = r/B is the Schwarzschild radius. The ansatz of
the antisymmetric field Pµν , the non-linear electrodynam-
ics source,H, and the energy-momentum tensor, Tµ

ν , used
to derive this solution have the form

P=
q

r2
dt∧ dr , H=−

q2

2r4
sech2

(
q2

2mr

)
,

T0
0 = T1

1 =
4q2e(q

2/mr)

8πr4
(
1+e(q2/mr)

)2 ,
T2
2 = T3

3 =

2q2e(q
2/mr)

(
q2(e(q

2/mr)−1)−2mr(1+e(q
2/mr))

)
8πmr5(1+e(q2/mr))3

.

(13)

The metric associated with the tetrad field given
by (11) is by definition given by the regular charged black
hole, which has the form

ds2 =X1dt
2+
dR2

X1
+R2dΩ2 , (14)

whereX1 =X
2 andX are defined in (12).

Now let us compare the solution given by (11) with that
given before: we obtained a solution with an arbitrary func-
tion B for the tetrad (1) with three unknown functions in

the spherical polar coordinates [62]. The tetrad field of that
solution can be obtained from (11) if the arbitrary function
Ψ is chosen as

Ψ =

{
R2B′2−2RB′+ 2m

R

[
1− tanh

(
q2

2mr

)]}1/2
X

.

(15)

2.2 The case with non-vanishing S-term

We start with the tetrad field of (1) with the six unknown
functions of t and r. In order to study the condition that
the field equations (8) are satisfied, it is convenient to start
from the general expression for the covariant components
of the tetrad field:

e(0)0 = Ǎ , e
(a)
0 = Ďx

a , e(0)α = Čx
α ,

e(a)α = δ
a
αB̌+ F̌x

axα+ ε
a
αβŠx

β , (16)

where the six unknown functions, Ǎ, Č, Ď, B̌, F̌ and Š are
connected with the six unknown functions of (1). We can
assume without loss of generality that the two functions Ď
and F̌ are vanishing by making use of the freedom to rede-
fine t and r [50]. We then transform the tetrad field (16) to
the spherical polar coordinates (r, θ, φ, t), so that we obtain
the form given in [63]. Then the condition that the field
equations (8) be satisfied is [64]

3B̌Š+ r(B̌Š′− B̌′Š) = 0 , 2ČŠ+( ˙̌SB̌− Š ˙̌B) = 0 ,
(17)

with Š′ = dŠ/dr and ˙̌S = dŠ/dt. Equation (17) can be
solved to give

Č = 0 , Š =
η

r3
B̌ , (18)

where η is a constant with the dimension of (length)2. The
line element then is given by the following expression:

ds2 =−Ǎ2dt2+ B̌2dr2+ r2B̌2
(
1+
η2

r4

)
d2Ω .

(19)

The symmetric part of the field equations now coin-
cides with the Einstein field equations written in terms of
the tetrad fields. Therefore, the metric tensor must be the
regular charged solution when the Schwarzschild radial co-
ordinateR is used. We defined the new radial coordinate to
have the form

R= rB̌

√
1+
η2

r4
(20)

and require that the line element written in the coordinates
(t, R, θ, φ) coincides with the regular charged metric [70].
Then we have

Ǎ(r) =X(R) ,
dR

dr
= B̌(r)X(R) . (21)
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Eliminating B̌ from (20) and the second equation of (21),
we obtain a differential equation for R(r), which can easily
be solved to give

r2 = |η| sinhY (R) , Y (R) = e
∫
dR
RX , (22)

where the additive integration constant is fixed in the last
equation by requiring the asymptotic condition r/R→ 1 as
R→∞. Finally we obtain

rB̌(r) =R tanhY (R) , r2Š =
η

r2
(
rB̌
)
=
η

|η|

R

coshY (R)
.

(23)

Now it is straightforward to obtain the covariant com-
ponents of the tetrad field, eaµ, with the non-vanishing
S-term for the regular charged solution in the coordinate
system (t, xα): the non-vanishing components are given by

e(0)0 =X ,

e(a)α = tanhY δ
a
α+

(
1

X
− tanhY

)
xaxα

R2

+

(
η

|η|

1

coshY

)
εaαβ

xβ

R
. (24)

The solution (24) asymptotically behaves like the solu-
tion (20) obtained before in [65], and when q = 0 and m

is replaced by m(1− e−R
3/r13), it is reduced to the solu-

tion (29) obtained in [63].
Finally, we notice that if the constant η is set equal to

zero the tetrad field (24) reduces to the matrix inverse of
the solution (11) when the arbitrary function Ψ = 0.

3 Regularized expression
for the gravitational energy-momentum

Multiplication of the first equation of (8) by the appropri-
ate inverse tetrad fields yields the form [6, 40]

∂ν
(
−eΣaλν

)
=−
eeaµ

4

(
4ΣbλνTbνµ− δ

λ
µΣ
bdcTbcd

)
−4πeaµT

λµ . (25)

By restricting the space-time index λ, making it assume
only spatial values, (25) takes the form [6]

∂0
(
eΣa0j

)
+∂k

(
eΣakj

)
=−
eeaµ

4

(
4ΣbcjTbcµ− δ

j
µΣ
bcdTbcd

)
−4πeeaµT

jµ .

(26)

Note that the last two indices of Σabc and T abc are anti-
symmetric. Taking the divergence of (26) with respect to j
yields

−∂0∂j

(
−
1

4π
eΣa0j

)
=

−
1

16π
∂j
[
eeaµ

(
4ΣbcjTbcµ− δ

j
µΣ
bcdTbcd

)
−∂j(ee

a
µT
jµ)
]
.

(27)

In the Hamiltonian formulation of the TEGR [28, 66]
the momentum canonically conjugate to the tetrad compo-
nents eaj is given by

Πaj =−
1

4π
eΣa0j ,

and the gravitational energy-momentum P a contained
within a volume V of a three-dimensional spacelike hyper-
surface is defined by [6]

P a =−

∫
V

d3x∂jΠ
aj . (28)

If no condition is imposed on the tetrad field, P a trans-
forms as a vector under the global SO(3,1) group. It de-
scribes the gravitational energy-momentum with respect
to observers adapted to ea

µ. These observers are character-
ized by the velocity field uµ = e(0)

µ and by the acceleration
fµ

fµ =
Duµ

ds
=
De(0)

µ

ds
= ua∇ae(0)

µ .

Let us assume that the space-time is asymptotically flat.
The total gravitational energy-momentum is given by

P a =−

∮
S→∞

dSkΠ
ak . (29)

The field quantities are evaluated on a surface S in the
limit r→∞.
An important property of the tetrad fields that satisfy

the condition

eaµ ∼= ηaµ+(1/2)ha
µ(1/r) (30)

is that in the flat space-time limit ea
µ(t, x, y, z) = δa

µ, and
therefore the torsion tensor is vanishing, i.e., T λµν = 0.
Hence for the flat space-time it is normal to consider
a set of tetrad fields such that T λµν = 0 in any coor-
dinate system. However, in general an arbitrary set of
tetrad fields that yields the metric tensor for the asymp-
totically flat space-time does not satisfy the asymptotic
condition given by (30). Moreover, for such tetrad fields the
torsion tensor obeys T λµν �= 0 for the flat space-time [6,
40]. It might be argued, therefore, that the expression for
the gravitational energy-momentum (29) is restricted to
a particular class of tetrad fields, namely, to the class of
frames in which T λµν = 0 if ea

µ represents the flat space-
time tetrad field [40]. To explain this, let us calculate
the flat space-time of the tetrad field given by (11) (by
putting the physical qua ntities m and q equal to zero), to
find

(Ea
µ) =

⎛
⎜⎜⎜⎝

L Ψ 0 0

Ψ sin θ cosφ L sin θ cosφ cos θ cosφ
R

− sinφ
R sin θ

Ψ sin θ sinφ L sin θ sinφ cos θ sinφ
R

cosφ
R sin θ

Ψ cos θ L cos θ − sin θ
R

0

⎞
⎟⎟⎟⎠ ,

(31)
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where L is defined in (12). Using (6), the expression (31)
yields the following non-vanishing torsion components:

T121 = cos θ cosφ(1−L) , T131 = sin θ sinφ(L−1) ,

T141 =
∂Ψ

∂R
sin θ cosφ , T124 = Ψ cos θ cosφ ,

T134 =−Ψ sin θ sinφ , T212 = cos θ sinφ(L−1) ,

T213 = sin θ cosφ(L−1) , T214 =
∂Ψ

∂R
sin θ sinφ ,

T224 = Ψ cos θ sinφ , T234 = Ψ sin θ cosφ ,

T312 = sin θ(1−L) , T314 =
∂Ψ

∂R
cos θ ,

T324 =−Ψ sin θ , T414 =
Ψ ∂Ψ
∂R

L
. (32)

The tetrad field (31) when written in Cartesian coordi-
nates will have the form

(Ea
µ(t, x, y, z)) =

(
L xαΨ

R

xaΨ
R

δa
α+ x

axα(L−1)
r2

)
. (33)

In view of the geometric structure of (33), we see that (11)
does not display the asymptotic behavior required by (30).
Moreover, in general the tetrad field given by (33) is
adapted to accelerated observers [6, 40, 66]. To explain this,
let us consider a boost in the x-direction of (33). We find

(Ea
µ(t, xα))

=

⎛
⎜⎜⎜⎜⎝

γL −vγ xΨ
R

yΨ
R

zΨ
R

−vγ xΨ
R
γ
(
1+ x

2(L−1)
r2

)
xy(L−1)
r2

xz(L−1)
r2

yΨ
R

xy(L−1)
r2

1+ y
2(L−1)
r2

yz(L−1)
r2

zΨ
R

xz(L−1)
r2

yz(L−1)
r2

1+ z
2(L−1)
r2

⎞
⎟⎟⎟⎟⎠ ,

(34)

where v is the speed of the observer and γ =
√
1− v2. It

can be shown that along an observer’s trajectory whose
velocity is determined by

uu = Eµ(0) =

(
γ
√
Ψ2+1,−vγ

xΨ

R
,
yΨ

R
,
zΨ

R

)
,

and the quantities

φ(j)
(k) = ui

(
E(k)m∂iE(j)

m
)
, (35)

constructed from (34) are non-vanishing. This fact indi-
cates that along the observer’s path the spatial axis E(i)

µ

rotates [6, 40, 66]. In spite of the above problems discussed
for the tetrad field of , it yields a satisfactory value for the
total gravitational energy-momentum, as we will discuss.
Maluf et al. [40] discussed the above problems for the

Kerr space-time and constructed a regularized expression
for the gravitational energy-momentum in the framework
of TEGR. They checked this expression for the diagonal
tetrad field of Kerr space-time that suffers from the above
problems and obtain very satisfactory results [40].
In (28) and (29) it is implicitly assumed that the ref-

erence space is determined by a set of tetrad fields ea
µ

for flat space-time such that the condition T aµν = 0 is

satisfied. However, in general there exist flat space-time
tetrad fields for which T aµν �= 0. In this case (28) may
be generalized [40, 66] by adding a suitable reference
space subtraction term, exactly like in the Brown–York
formalism [67–69].
We will denote T aµν(E) = ∂µE

a
ν−∂νEaµ andΠaj(E)

as the expression of Πaj constructed out of the flat tetrad
fieldEa

µ. The regularized form of the gravitational energy-
momentum P a is defined by [40, 66]

P a
def.
= −

∫
V

d3x∂k
[
Πak(e)−Πak(E)

]
. (36)

This condition guarantees that the energy-momentum of
the flat space-time always vanishes. The reference space-
time is determined by the tetrad fields Ea

µ obtained from
ea
µ by requiring the vanishing of the physical parame-
ters like mass, angular momentum, etc. Assuming that the
space-time is asymptotically flat, then (36) may have the
form [40, 66]

P a =−

∮
S→∞

dSk
[
Πak(e)−Πak(E)

]
, (37)

where the surface S is established at spacelike infinity.
Equation (37) transforms as a vector under the global
SO(3,1) group. Now we are in a position to prove that the
tetrad field (11) yields a satisfactory value for the total
gravitational energy-momentum.
We will integrate (37) over a surface of constant radius,

x1 = r, and require r→∞. Therefore, the index k in (37)
takes the value k = 1. We need to calculate the quantity

Σ(0)01 = e(0)0Σ
001 =

1

2
e(0)0(T

001− g00T 1) .

Evaluating the above equation using the tetrad field
of (11), we find

−Π(0)1(e) =
1

4π
eΣ(0)01 =−

1

8π
R sin θ

×

({√
1−
2m

R

[
1− tanh

(
q2

2mR

)]}
L(L+1)

)
,

(38)

and the expression ofΠ(0)1(E) is given by

Π(0)1(E) =
1

8π
R sin θL(L+1) . (39)

Thus the gravitational energy contained within a sphere of
radius R1 is given by

P 0 ∼=
1

8π

∫
R→R1

{
−R

(
1−
m

R

[
1− tanh

(
q2

2mR

)]

×

(
2+
3Ψ2

2

))
+R

[
(2+

3Ψ2

2
)

]}
sin θdθdφ

∼=m

[
1− tanh

(
q2

2mR1

)]
, (40)

which is the expected result.
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4 Main results and discussion

In the last years a revival of non-linear electrodynamics
theories is observed [70]. Non-linear electrodynamics was
first proposed by Born and Infeld [71, 72] in order to ob-
tain a finite-energy electron model. The non-linear theories
appear as effective theories at different levels of string/M-
theory. The Born–Infeld action arises as part of the low-
energy effective action of the open superstring [73, 74].
In this paper we have studied the charged solutions

in the TEGR theory, applying the most general spheri-
cally symmetric tetrad field given by (1) to the field equa-
tions (8). Exact analytic solutions are obtained by study-
ing two cases: the case without S-term and the case with
the S-term of (1).
We have obtained two exact solutions in the TEGR,

(11) and (24). The associated metric of these space-times
is the one of the regular charged space-time. For the
tetrad field of the form (1) without the S-term, the solu-
tion can be obtained from the diagonal tetrad field [62]
by applying those local Lorentz transformations that re-
tain the form (1). Since the general expression for those
local Lorentz transformations involves an arbitrary func-
tion, denoted by Ψ(R, t), the solution obtained and given
by (11) for the tetrad field also involves this arbitrary
function and reduces to the previous solution [62] when
the arbitrary function Ψ is chosen appropriately as given
in (15).
For the tetrad field of the form (1) with the non-

vanishing S-term, the solution (24) is derived by requiring
the two conditions: the one given by (18), i.e., the condi-
tion that the second equation of (8) be satisfied, and the
condition that the metric should coincide with the regular
charged metric [70]. The solution involves a constant pa-
rameter η. If this constant is set equal to zero, the tetrad
field (24) reduces to the matrix inverse of the solution (11)
when the arbitrary function is set equal to zero, i.e., Ψ = 0
in Cartesian coordinates.
Maluf et al. [6, 40, 66] have derived a simple expression

for the energy-momentum flux of the gravitational field.
This expression is obtained on the assumption that (28)
represents the energy-momentum of the gravitational field
on a volume V of a three-dimensional spacelike hypersur-
face. They [40, 66] gave this definition for the gravitational
energy-momentum in the framework of TEGR, which re-
quires T λµν(E) = 0 for the flat space-time. They extended
this definition to the case where the flat space-time tetrad
fields Eaµ yield T

a
µν(E) �= 0. They show [66] that in the

context of the definition of the regularized gravitational
energy-momentum it is not strictly necessary to stipulate
asymptotic boundary conditions for tetrad fields that de-
scribe asymptotically flat space-times.
Using the definition of the torsion tensor given by (6)

and applying it to the tetrad field of (11) we show that the
flat space-time associated with this tetrad field has non-
vanishing torsion components given by (32) and that it is
adapted to an accelerated observer given by (35). How-
ever, using the regularized expression of the gravitational
energy-momentum of (37) and calculating all the necessary
components we finally get (40), which shows that the total

energy of the tetrad field of (11), contained within a sphere
of radius R1, has a satisfactory value.
The tetrad field of (24) also suffers from the same prob-

lems and the flat space-time of (24) has the form

(Ea
µ(t, r, θ, φ))

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 sin θ cosφ

r(4r2η sinφ

+cos θ cosφH1)

H2

r sin θ(4r2η cos θ cosφ

−H1 sinφ)

H2

0 sin θ sinφ 0

r sin θ(4r2η cos θ sinφ

+H1 cosφ)

H2

0 cos θ −rH1 sin θ
H2

−4r3η sin2 θ
H2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(41)

where H1 = (4r
4−η2) and H2 = 4r4+η2. It can be shown

that the tetrad field Eaµ of (41) has the same problems as
encountered for the tetrad field Ea

µ of (31). Therefore, to
calculate the energy associated with the tetrad field of (24)
we must use the regularized expression given by (37). Cal-
culating all the necessary components of (37) we finally
obtain

P 0 ∼=
1

4π

∫
r→∞

{
−r

(
2−
m

r

[
1− tanh

(
q2

2mr

)])
+2r

}

× sin(θ)dθdφ

∼=m

[
1− tanh

(
q2

2mr

)]
. (42)
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47. M. Blagojević, M. Vasilić, Class. Quantum Grav. 17, 3785
(2000)
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